Set-Up of the CytoFLEX for Extracellular Vesicle Measurement

APPLICATION NOTE

Authors:

Andreas Spittler, MD, Associate Professor for Pathophysiology,

Affiliation:

Medical University of Vienna, Core Facility Flow Cytometry & Department of Surgery, Research Laboratories

IN THIS PAPER YOU WILL LEARN

How to setup the CytoFLEX for small particle analysis

How to eliminate background particles found in buffers and reagents to enhance your small particle detection

How to use control beads to calibrate the CytoFLEX for microparticle detection

Background

The measurement and the characterization of Extracellular Vesicles (EV) have been of growing interest over the last 20 years. Flow cytometry instruments were not the most appropriate way to analyse these particles as the optical resolution of instruments was insufficient to detect particles below 250 nm. However, the Beckman Coulter CytoFLEX now offers the ability to measure EV down to at least 150 nm and allows the detection of their cellular origin using up to 13 fluorescence parameters. Regardless of the technical improvements the set-up of the instrument is still a critical point and several requirements need to be met which are illustrated here.

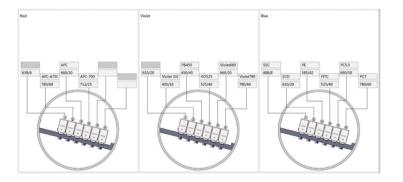
Introduction

Extracellular vesicles are a heterogeneous cell-derived particle population in a size range between 50 nm to 1,000 nm. There is a growing interest not only from academic research groups to determine EV in several fluids such as cell culture supernatant, in plasma samples or in whole blood but also in clinical research since it has been shown that the measurement of microparticles (MPs)¹ might be of clinical relevance. The methods to identify EV are many and involve high speed centrifugation, Western blotting, proteomics, electron microscopy, imaging methods and flow cytometry. Methods for the detection of EV by flow cytometry have been developed in the last years and special attention has been paid to standardization protocols. Compared with other methods, flow cytometry has the big advantage that EV can be detected as rare events, in high numbers and by antigens on the surface, which characterize their cellular origin.

However, until now flow cytometry technology has had some unfortunate limitations. It was not possible to detect microparticles below 250-300 nm in size in a meaningful manner. This size range does not appear to be very far from the smallest particles of 50 nm in size, however we have to consider that MPs in a size greater than 300 nm are only the "tip of the iceberg" of visible particles and at least as many particles are smaller than 300 nm in size. The importance in clinical research and the technical requirements to detect smaller microparticles was clearly demonstrated in 2013 by Sarlon-Bartoli et al². Using a Beckman Coulter Gallios

flow cytometer they correlated an increase in plasma levels of leukocyte-derived MPs with unstable plague in asymptomatic patients with high-grade carotid stenosis. These differences between sample groups were detectable using the Gallios flow cytometer which allowed for better discrimination between noise in an acceptable range and extracellular particles. The CytoFLEX is the first flow cytometer which can detect EVs in a meaningful way down to 150 nm and therefore offers the possibility to detect particles below 300 nm which enhances information. The better resolution of the CytoFLEX can be reached by using the side scatter of the 405 nm laser and by several technical as well as preanalytical preparations. Here we describe how to set-up and standardize the CytoFLEX for particle measurement and discuss some pitfalls which should be avoided to get the best information from EVs detection.

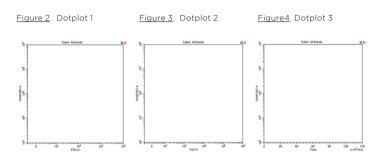
Protocol


Instrument set-up

Turn on the CytoFLEX and the computer. Proceed with the daily start-up procedure and execute the QC measurement using the *Default Filter Configuration*. Change your filter configuration as follows.

Filter configuration

Change your filter configuration of the Violet laser (405 nm) as shown in Figure 1. The Violet SSC (VSSC) 405/10 channel will now serve as trigger channel and discriminates the noise.


Figure 1. Filter configuration (Trigger signal on VSSC405 nm)

Set-up Dotplots.

Create 3 Dotplots and 1 Histogram

- Dotplot 1: VSSC 405 nm, log-FL1 488nm, log (Figure 2) detects the Gigamix beads (see below) and triggers the noise
- Dotplot 2: VSSC 405 nm, log FSC 488nm, log (Figure 3) determines the region for size
- Dotplot 3: Time (120 sec) VSSC 405 nm, log (Figure 4) follow events during washing steps

Prepare additional dotplots and histograms according to your fluorescence staining needs.

Reagents

Prepare the Gigamix solution. The Gigamix solution is a mixture of fluorescent Megamix-Plus SSC and Megamix-Plus FSC beads (BioCytex a Stago group company, Marseille, France) which have different sizes (100, 160, 200, 240, 300, 500, 900 nm) and are recommended for daily standardization for microparticle measurement on the CytoFLEX.

- Vortex the beads for at least 10 seconds each.
- Mix 0.25 mL Megamix-Plus FSC reagent (0.1 μm, 0.3 μm, 0.5 μm and 0.9 μm.) with 0.25 mL Megamix-Plus SSC reagent (0.16 μm, 0.20 μm, 0.24 μm and 0.5 μm.) according to the package instructions provided.

Set-up the Gains and the Threshold

Set the *Threshold* of the trigger signal (VSSC) manually to 2000 and Height Figure 5 Threshold and set the gains of the FSC to ~106, VSSC to ~61 and FITC to ~272 Figure 6 Gains.

Figure 5. Threshold

Gain	Threshold	Width	
Prim	ary Threshold	d (Trigger L	evel)
Chanr	nel: Violet S	SC -]
0 M	anual	2000 (>0) 💿 Height 🔘 Area
🔿 Au	tomatic		
ogic (Operator:	.*	
Seco	n <mark>d</mark> ary Thresh	nold (Trigge	r Level)
Chanr	nel:	*]
		1 (.0	Height O Area
⊚ Ma	anual	1 (>0	I Cheight C Area

Figure 6. Gains

Gain	Threshold	Width			
FSC		106	4.9	Þ	(1~3000)
SSC		61	÷	Þ	(1~3000)
Violet	ssc	61	4	×	(1~3000)
FITC		272	1	Þ	(1~3000)

Clean your sample line with fresh and sterile distilled water for 2 minutes at a flow rate of 60 $\mu L/minute.$

- Increase/decrease VSSC gain to an event rate of ~400 events/sec.
- Measure Megamix beads as shown in Dotplot 1 at a flow rate of Slow = 10 $\mu L/minute.$
 - a) increase/decrease SSC 405 nm gain.
 - b) increase/decrease FL1 gain according to Figure (Dotplot 1).
- You should now see a picture as shown below Figure 7 Gigamix beads. If this picture is not seen readjust the gains for FSC, VSSC and FITC until it displays Figure 7.
- Save your sample as "Gigamix".
- For better visibility set 2 regions: the first around the 100 nm beads (blue) and the second around the 900 nm beads (red) as shown in Figure 8.

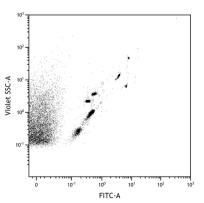
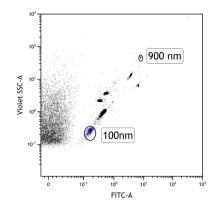
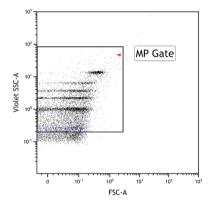
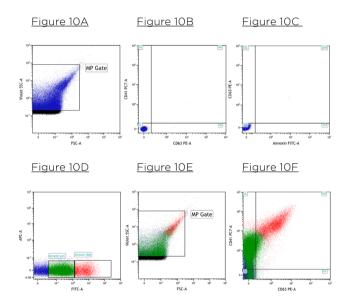




Figure 8. Gigamix beads gated

In Dotplot 2, set a region as shown in Figure 9 around the 900nm and the 100nm bead population. Label this region as MP Gate – in this gate MPs are displayed. The following dotplots and histograms should be gated on the MP gate.

Figure 9. MP Gate setting

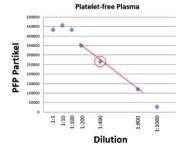
After you have measured the Gigamix beads thoroughly rinse the sample line with distilled water for 2 minutes at flow rate *Fast* = 60μ L/minute and watch Dotplot 3 and the Histogram. At the end of the 2 minutes cleaning procedure you should reach an event rate per second which is equal to the first washing step at the beginning of your experiments (-400 events/sec); repeat the washing procedure if it does not return to baseline. Repeat the 2 minutes washing step between each sample measurement!


Sample measurement

Measure your sample at the flow rate *Slow*. Adjust the gains for the other fluorescence parameters according to your staining protocol and your needs.

Examples and pitfalls

Extracellular Vesicle staining


An example from Extracellular Vesicle measurement is shown below (Figure 10) and illustrates detection of Annexin V FITC, CD41 PE and CD63 PE-Cy7 stained particles. Isolation was performed by centrifugation of a platelet concentrate. Particles were subsequently stained and analysed on a CytoFLEX. Figure 10A shows particles in the MP gate. Figure 10B and C demonstrate autofluorescence intensities of particles in the relevant fluorescence channels. Figure 10D shows detection of two Annexin positive populations. The Annexin dim population is indicated as green, expresses CD41 but no or low CD63 and are of a very small in size. The Annexin high population is also CD41 and CD63 double positive and a larger size. (Figure 10E and F)

Swarm detection

When multiple vesicles are simultaneously illuminated by the laser beam and are counted as one larger single cell event, this phenomenon is referred to as swarm detection. As a result the true concentration of EVs is underestimated. To avoid this problem a serial dilution assay has to be performed and the optimal EV concentration which is in the linear range of dilution and EV concentration has to be calculated Figure 11.

Particles from Platelet Free Plasma (PFP) were serially diluted from 1:2 to 1:1000 and measured on the CytoFLEX. The red line indicates the linear range of particle measurement without swarm detection. In the present case a dilution of 1:400 gives the best results.

Sample Media

Each media or buffer in which the sample was diluted was analysed using the Gigamix setting (VSSC Gain: 61, Threshold: 2000, FSC Gain: 106) for 120 seconds at flow rate Slow (10 μ L/min)

The following figures show examples of measurements using various samples. NOTE: it is highly critical to clean the sample line between each measurement for at least 2 minutes. Figure 12A shows Gigamix beads measured over time for 2 minutes. Washing after Gigamix (Figure 12B) demonstrates that beads are washed out of the system after about one minute; this varies for different bead populations.

The background noise of distilled water is shown in Figure 12C, even PBS (Figure 12D) slightly increases the background particle noise which is much more elevated when fetal calf serum (FCS, Figure 12E) is added to the sample media. As can be seen in the Figure 12F PBS with 10 % FCS, dots in the red oval indicate the appearance of particles, possibly extracellular events and/or protein aggregates present in the FCS.

Figure 12.

Figure 12A. Gigamix

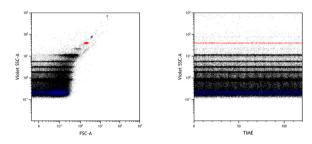


Figure 12B. Washing after Gigamix

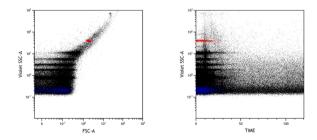


Figure 12C. Distilled water Events/sec: 557

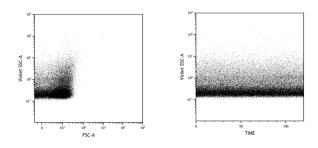


Figure 12D. PBS Events/sec: 533

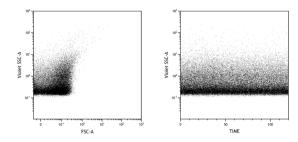
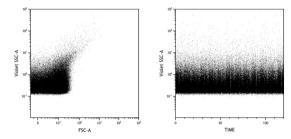
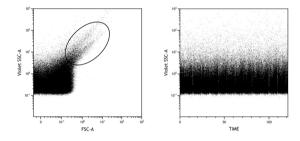
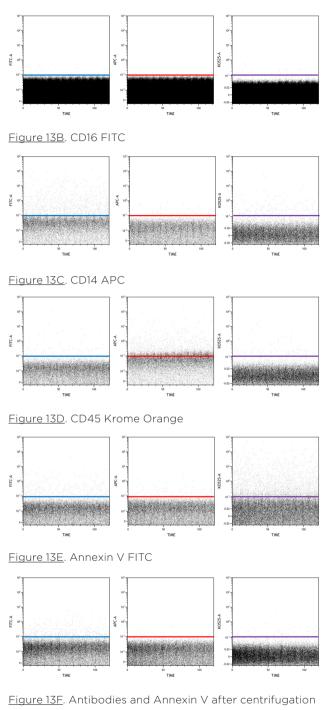
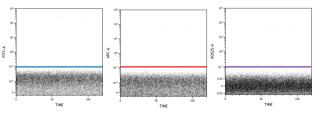


Figure 12E. PBS with 1% FCS Events/sec: 2194

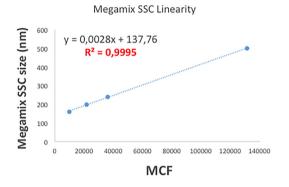

Figure 12F. PBS with 10% FCS Events/sec: 4082



Antibodies and reagents diluted in distilled water

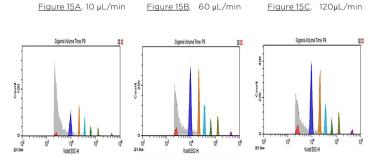
 $20\,\mu\text{L}$ of monoclonal antibody solution or $1\,\mu\text{L}$ of Annexin V solution with or without centrifugation, were subsequently diluted in 250 μ L distilled water and measured for 120 seconds at a flow rate SLOW. As a control, Pentaglobin (IgG, IgM, IgA) solution was diluted in distilled water in a concentration of 1:100. Coloured markers were set for each channel indicating the background of unstained immunoglobulins (Pentaglobín, Figure 13A). Interestingly as can be seen in Figure 13 below, there was a signal for antibody aggregates specific for CD16-FITC, CD14-APC, CD45-Krome Orange and Annexin-FITC; however, the strongest signals were detectable for APC and Krome Orange. Since there was no compensation set, FITC and Krome Orange spillovers could be observed. When antibody cocktails were centrifuged (Figure 13F, Microfuge 22R Centrifuge, Beckman Coulter) prior to staining procedures there was no specific signal detectable.

<u>Figure 13A</u>. Immunoglobulin Solution (Pentaglobin: distilled water = 1:100)



Technical notes

Linearity of Megamix-Plus SSC beads in comparison of size to fluorescence intensity


As shown in Figure 14 there is a strong linearity (R2=0.9995) between the size of the Megamix-Plus SSC beads (100, 160, 200, 500 nm) which are optimized for the SSC light signal. Megamix-Plus SSC beads were measured using the Gigamix protocol described above. For analysis, a marker was set over each single peak. The mean channel fluorescence intensity of each peak was set in relation to the size of the peak and a regression curve analysis was calculated using Excel (Microsoft).

<u>Figure 14</u>. Linearity between size of Megamix-Plus SSC beads and mean channel fluorescence intensity of the measured beads.

Influence of the measured sample flow rate in comparison to the noise

Gigamix beads were diluted 1:5 in distilled water and measured at flow rates of 10, 60 and 120 μ L/min. As can be seen in Figure 15 the population of the 100 nm beads is very small and within the range of noise. Increasing the flow rate makes the 100 nm beads more «visible» which clearly indicates that only the beads signal was increased but not the background noise. Also all other peaks are better visible so that it is obvious that by increasing the flow rate the background noise is not increased and remains stable if distilled water is used as diluent.

Summary and discussion

The CytoFLEX is the first flow cytometer with an acceptable noise range on which we can clearly demonstrate detection of extracellular vesicles down to a size of 150 nm. The potential to combine small particle analysis with the detection of up to 13 additional fluorescence parameters makes this cytometer an outstanding instrument for extracellular vesicle detection.

However, the correct measurement is strongly dependent on a series of prerequisites. For example, the staining of extracellular vesicles from whole blood requires blood draw into citrate anticoagulated tubes with special conditions which are described in detail in the literature cited herein. The so-called preanalytic procedures include not only blood drawing procedures but also the handling of the blood - do not shake or mix - otherwise a lot of microparticles are produced and artefacts are measured. Sample preparation is highly dependent on centrifugation steps which are also well described in the literature. Additionally we demonstrate here, again, the selection and preparation of the sample media is important. Measuring samples that contain plasma or measuring cell culture samples which contain FCS give a high background of particles similar to the particles which are intended to be measured.

Staining procedures are also important. Before starting, sample staining dilution steps should be performed to avoid the swarm effect and ensure measurement of single events. Centrifuge the antibody solution(s) before dilution or titration otherwise aggregates can be detected by the flow cytometer. Taken together, these precautions allow for best practice in extracellular vesicle measurement.

While Gigamix beads serve as a good tool to standardize the CytoFLEX on a daily basis for particle measurement, they are in reality polystyrene beads and are very different from biological membranes which ultimately leads to some discrepancy in predicting the size of the extracellular vesicles. The refractory index of beads differs substantially from the refractory index of biological membranes/ particles. The particle size should be only seen in a range of size measurements and the results should be carefully interpretated. The next few years will show whether increasing sensitivities of particle measurement will enhance the knowledge and the biological relevance of extracellular vesicles. The CytoFLEX is a big step forward to nanoparticle detection and offers particle evaluation down to approximately 150 nm.

REAGENTS

Megamix-Plus SSC beads: BioCytex - Reference 7803, 500 µL beads, 50 tests

Megamix-Plus FSC beads: BioCytex - Reference 7802, 500 µL beads, 50 tests

REFERENCES

- 1. Barteneva NS et al. Circulating microparticles: square the circle. BMC Cell Biol. 2013, 14:23
- 2. Sarlon-Bartoli G et al. Plasmatic level of leukocytederived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis. J Am Coll Cardiol. 2013, 62:1436

For Research Use Only. Not for use in diagnostic procedures.

© 2015 Beckman Coulter Life Sciences. All rights reserved. Beckman Coulter, the stylized logo, Kaluza are trademarks of Beckman Coulter, Inc. and registered in the USPTO. Krome Orange, Gallios are registered trademarks of Beckman Coulter, Inc. CytoFLEX and CytExpert are trademarks of Xitogen Technologies (Suzhou), Inc., a Beckman Coulter company. All other trademarks are the property of their respective owners.

FLOW-861APP0315-A.